1
Carabineiro, S. A. C. (2017). Applications of Gold Nanoparticles in Nanomedicine: Recent Advances in Vaccines. Molecules (Basel, Switzerland), 22(5). https://doi.org/10.3390/molecules22050857
2
Grisel, R., Weststrate, K.-J., Gluhoi, A., & Nieuwenhuys, B. E. (2002). Catalysis by Gold Nanoparticles. Gold Bulletin, 35(2), 39–45. https://doi.org/10.1007/BF03214836.
3
Haruta, M. (2003). When gold is not noble: Catalysis by nanoparticles. Chemical Record (New York, N.Y.), 3(2), 75–87. https://doi.org/10.1002/tcr.10053.
4
Hashmi, A. S. K., & Hutchings, G. J. (2006). Gold catalysis. Angewandte Chemie (International Ed. in English), 45(47), 7896–7936. https://doi.org/10.1002/anie.200602454.
5
Bond G.C., Louis C., Thompson D.T (2006). Catalysis by Gold. Volume 6 Imperial College Press; London, UK.
6
Carabineiro, S. A. C., & Thompson, D. T. (2007). Catalytic Applications for Gold Nanotechnology. In U. Heiz & U. Landman (Eds.), Nanocatalysis (pp. 377–489). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-32646-5_6.
7
Carabineiro, S. A. C., & Thompson, D. T. (2010). Gold Catalysis. In Corti, C., & Holliday, R. (Eds.), Gold: Science and applications. Boca Raton, FL: CRC Press.
8
Priecel, P., Adekunle Salami, H., Padilla, R. H., Zhong, Z., & Lopez-Sanchez, J. A. (2016). Anisotropic gold nanoparticles: Preparation and applications in catalysis. Chinese Journal of Catalysis, 37(10), 1619–1650. https://doi.org/10.1016/S1872-2067(16)62475-0.
9
Dykman, L. A., & Khlebtsov, N. G. (2011). Gold nanoparticles in biology and medicine: Recent advances and prospects. Acta Naturae, 3(2), 34–55. PMID: 22649683.
10
Dykman, L., & Khlebtsov, N. (2012). Gold nanoparticles in biomedical applications: Recent advances and perspectives. Chemical Society Reviews, 41(6), 2256–2282. https://doi.org/10.1039/c1cs15166e.
11
Shah, M., Badwaik, V. D., & Dakshinamurthy, R. (2014). Biological applications of gold nanoparticles. Journal of Nanoscience and Nanotechnology, 14(1), 344–362. PMID: 24730267.
12
Maughan, C. N., Preston, S. G., & Williams, G. R. (2015). Particulate inorganic adjuvants: Recent developments and future outlook. The Journal of Pharmacy and Pharmacology, 67(3), 426–449. https://doi.org/10.1111/jphp.12352.
13
Versiani, A. F., Andrade, L. M., Martins, E. M. N., Scalzo, S., Geraldo, J. M., Chaves, C. R., . . . da Fonseca, F. G. (2016). Gold nanoparticles and their applications in biomedicine. Future Virology, 11(4), 293–309. https://doi.org/10.2217/fvl-2015-0010.
14
Robles-García, M. A., Rodríguez-Félix, F., Márquez-Ríos, E., Aguilar, J. A., Barrera-Rodríguez, A., Aguilar, J., . . . Del-Toro-Sánchez, C. L. (2016). Applications of Nanotechnology in the Agriculture, Food, and Pharmaceuticals. Journal of Nanoscience and Nanotechnology, 16(8), 8188–8207. https://doi.org/10.1166/jnn.2016.12925.
15
Klinman, D. M., Sato, T., & Shimosato, T. (2016). Use of nanoparticles to deliver immunomodulatory oligonucleotides. Wiley Interdisciplinary Reviews. Nanomedicine and Nanobiotechnology, 8(4), 631–637. https://doi.org/10.1002/wnan.1382.
16
Gross, S. (2008). Colloidal Dispersion of Gold Nanoparticles. In: Ulrich Schubert, Nicola Hüsing und Richard M. Laine (Hg.): Materials Syntheses: A Practical Guide. Vienna: Springer Vienna, S. 155–161. DOI: https://doi.org/10.1007/978-3-211-75125-1_21.
17
Daniel, Marie-Christine; Astruc, Didier (2004). Gold nanoparticles. Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. In: Chemical reviews 104 (1), S. 293–346. DOI: 10.1021/cr030698.
18
Ostwald, Wilhelm (1909). Zur Geschichte des kolloiden Goldes. In: Zeitschrift für Chemie und Industrie der Kolloide 4 (1), S. 5–14. DOI: 10.1007/BF01464954.
19
Toennies, J. P., Gonser, U., Osgood, R. M., Panish, M. B., Sakaki, H., Lotsch, H. K. V., . . . Vollmer, M. (1995). Optical Properties of Metal Clusters (Vol. 25). Berlin, Heidelberg: Springer Berlin Heidelberg.Schmid, G. (1992). Large clusters and colloids. Metals in the embryonic state. Chemical Reviews, 92(8), 1709–1727. https://doi.org/10.1021/cr00016a002.
20
Schmid, G. (1992). Large clusters and colloids. Metals in the embryonic state. Chemical Reviews, 92(8), 1709–1727. https://doi.org/10.1021/cr00016a002.
21
Enustun, B. V., & Turkevich, J. (1963). Journal of the American Chemical Society, 85(21), 3317–3328. https://doi.org/10.1021/ja00904a001.
22
Schmid, G., & Corain, B. (2003). Nanoparticulated Gold: Syntheses, Structures, Electronics, and Reactivities. European Journal of Inorganic Chemistry, 2003(17), 3081–3098. https://doi.org/10.1002/ejic.200300187.
23
McFarland, A. D., Haynes, C. L., Mirkin, C. A., van Duyne, R. P., & Godwin, H. A. (2004). Color My Nanoworld. Journal of Chemical Education, 81(4), 544A. https://doi.org/10.1021/ed081p544A.
24
Cumberland, S. L., & Strouse, G. F. (2002). Analysis of the Nature of Oxyanion Adsorption on Gold Nanomaterial Surfaces. Langmuir, 18(1), 269–276. https://doi.org/10.1021/la011278n.
25
Turkevich, J., Stevenson, P. C., & Hillier, J. (1951). A study of the nucleation and growth processes in the synthesis of colloidal gold. Discussions of the Faraday Society, 11, 55. https://doi.org/10.1039/df9511100055.
26
Saha, S. K., Roy, P., Mondal, M. K., Roy, D., Gayen, P., Chowdhury, P., & Babu, S. P. S. (2017). Development of chitosan based gold nanomaterial as an efficient antifilarial agent: A mechanistic approach. Carbohydrate Polymers, 157, 1666–1676. https://doi.org/10.1016/j.carbpol.2016.11.047.
27
Babička, J. (1943). Gold in Lebewesen. Mikrochemie Vereinigt Mit Mikrochimica Acta, 31(4), 201–253. https://doi.org/10.1007/BF01417553.
28
Fujita, Y., & Taguchi, H. (2011). Current status of multiple antigen-presenting peptide vaccine systems: Application of organic and inorganic nanoparticles. Chemistry Central Journal, 5(1), 48. https://doi.org/10.1186/1752-153X-5-48.
29
Salazar-González, J. A., González-Ortega, O., & Rosales-Mendoza, S. (2015). Gold nanoparticles and vaccine development. Expert Review of Vaccines, 14(9), 1197–1211. https://doi.org/10.1586/14760584.2015.1064772.
30
Tao, Y., Zhang, Y., Ju, E., Ren, H., & Ren, J. (2015). Gold nanocluster-based vaccines for dual-delivery of antigens and immunostimulatory oligonucleotides. Nanoscale, 7(29), 12419–12426. https://doi.org/10.1039/c5nr02240a.
31
Vartak, A., & Sucheck, S. J. (2016). Recent Advances in Subunit Vaccine Carriers. Vaccines, 4(2). https://doi.org/10.3390/vaccines4020012.
32
Safari, D., Marradi, M., Chiodo, F., Th Dekker, H. A., Shan, Y., Adamo, R., . . . Snippe, H. (2012). Gold nanoparticles as carriers for a synthetic Streptococcus pneumoniae type 14 conjugate vaccine. Nanomedicine (London, England), 7(5), 651–662. https://doi.org/10.2217/nnm.11.151.
33
Niikura, K., Matsunaga, T., Suzuki, T., Kobayashi, S., Yamaguchi, H., Orba, Y., . . . Sawa, H. (2013). Gold nanoparticles as a vaccine platform: Influence of size and shape on immunological responses in vitro and in vivo. ACS Nano, 7(5), 3926–3938. https://doi.org/10.1021/nn3057005.
34
Webster, D. M., Sundaram, P., & Byrne, M. E. (2013). Injectable nanomaterials for drug delivery: Carriers, targeting moieties, and therapeutics. European Journal of Pharmaceutics and Biopharmaceutics : Official Journal of Arbeitsgemeinschaft Fur Pharmazeutische Verfahrenstechnik E.V, 84(1), 1–20. https://doi.org/10.1016/j.ejpb.2012.12.009.
35
Lin, A. Y., Lunsford, J., Bear, A. S., Young, J. K., Eckels, P., Luo, L., . . . Drezek, R. A. (2013). High-density sub-100-nm peptide-gold nanoparticle complexes improve vaccine presentation by dendritic cells in vitro. Nanoscale Research Letters, 8(1), 72. https://doi.org/10.1186/1556-276X-8-72.
36
Cao-Milán, R., & Liz-Marzán, L. M. (2014). Gold nanoparticle conjugates: Recent advances toward clinical applications. Expert Opinion on Drug Delivery, 11(5), 741–752. https://doi.org/10.1517/17425247.2014.891582.
37
Bolhassani, A., Javanzad, S., Saleh, T., Hashemi, M., Aghasadeghi, M. R., & Sadat, S. M. (2014). Polymeric nanoparticles: Potent vectors for vaccine delivery targeting cancer and infectious diseases. Human Vaccines & Immunotherapeutics, 10(2), 321–332. https://doi.org/10.4161/hv.26796.
38
Cruz, L. J., Tacken, P. J., Zeelenberg, I. S., Srinivas, M., Bonetto, F., Weigelin, B., . . . Figdor, C. G. (2014). Tracking targeted bimodal nanovaccines: Immune responses and routing in cells, tissue, and whole organism. Molecular Pharmaceutics, 11(12), 4299–4313. https://doi.org/10.1021/mp400717r.
39
Torres, A. G., Gregory, A. E., Hatcher, C. L., Vinet-Oliphant, H., Morici, L. A., Titball, R. W., & Roy, C. J. (2015). Protection of non-human primates against glanders with a gold nanoparticle glycoconjugate vaccine. Vaccine, 33(5), 686–692. https://doi.org/10.1016/j.vaccine.2014.11.057.
40
Tavernaro, I., Hartmann, S., Sommer, L., Hausmann, H., Rohner, C., Ruehl, M., . . . Schlecht, S. (2015). Synthesis of tumor-associated MUC1-glycopeptides and their multivalent presentation by functionalized gold colloids. Organic & Biomolecular Chemistry, 13(1), 81–97. https://doi.org/10.1039/c4ob01339e.
41
Popescu, R. C., & Grumezescu, A. M. (2015). Metal based frameworks for drug delivery systems. Current Topics in Medicinal Chemistry, 15(15), 1532–1542. PMID: 25877086.
42
Zhang, X. (2015). Gold Nanoparticles: Recent Advances in the Biomedical Applications. Cell Biochemistry and Biophysics, 72(3), 771–775. https://doi.org/10.1007/s12013-015-0529-4.
43
Pelliccia, M., Andreozzi, P., Paulose, J., D’Alicarnasso, M., Cagno, V., Donalisio, M., . . . Krol, S. (2016). Additives for vaccine storage to improve thermal stability of adenoviruses from hours to months. Nature Communications, 7, 13520. https://doi.org/10.1038/ncomms13520.
44
Chen, Y.-S., Hung, Y.-C., Lin, W.-H., & Huang, G. S. (2010). Assessment of gold nanoparticles as a size-dependent vaccine carrier for enhancing the antibody response against synthetic foot-and-mouth disease virus peptide. Nanotechnology, 21(19), 195101. https://doi.org/10.1088/0957-4484/21/19/195101.
45
Barhate, G. A., Gaikwad, S. M., Jadhav, S. S., & Pokharkar, V. B. (2014). Structure function attributes of gold nanoparticle vaccine association: Effect of particle size and association temperature. International Journal of Pharmaceutics, 471(1-2), 439–448. https://doi.org/10.1016/j.ijpharm.2014.06.002.
46
Fernández, T. D., Pearson, J. R., Leal, M. P., Torres, M. J., Blanca, M., Mayorga, C., & Le Guével, X. (2015). Intracellular accumulation and immunological properties of fluorescent gold nanoclusters in human dendritic cells. Biomaterials, 43, 1–12. https://doi.org/10.1016/j.biomaterials.2014.11.045.
47
Zhou, Q., Zhang, Y., Du, J., Li, Y., Zhou, Y., Fu, Q., . . . Zhan, L. (2016). Different-Sized Gold Nanoparticle Activator/Antigen Increases Dendritic Cells Accumulation in Liver-Draining Lymph Nodes and CD8+ T Cell Responses. ACS Nano, 10(2), 2678–2692. https://doi.org/10.1021/acsnano.5b07716.
48
Freivalds, J., Kotelovica, S., Voronkova, T., Ose, V., Tars, K., & Kazaks, A. (2014). Yeast-expressed bacteriophage-like particles for the packaging of nanomaterials. Molecular Biotechnology, 56(2), 102–110. https://doi.org/10.1007/s12033-013-9686-0.
49
Asadi, N., Davaran, S., Panahi, Y., Hasanzadeh, A., Malakootikhah, J., Fallah Moafi, H., & Akbarzadeh, A. (2017). Application of nanostructured drug delivery systems in immunotherapy of cancer: A review. Artificial Cells, Nanomedicine, and Biotechnology, 45(1), 18–23. https://doi.org/10.1080/21691401.2016.1178136.
50
Aly, H. A. A. (2012). Cancer therapy and vaccination. Journal of Immunological Methods, 382(1-2), 1–23. https://doi.org/10.1016/j.jim.2012.05.014.
51
Crosta P. Cancer: Facts, Causes, Symptoms and Research. [Abgerufen am 23. Februar 2019]; verfügbar unter: http://www.medicalnewstoday.com/info/cancer-oncology.
52
Coley, W. B. (1928). END RESULTS IN HODGKIN’S DISEASE AND LYMPHOSARCOMA TREATED BY THE MIXED TOXINS OF ERYSIPELAS AND BACILLUS PRODIGIOSUS, ALONE OR COMBINED WITH RADIATION. Annals of Surgery, 88(4), 641–667.
53
Mocan, T., Matea, C., Tabaran, F., Iancu, C., Orasan, R., & Mocan, L. (2015). In Vitro Administration of Gold Nanoparticles Functionalized with MUC-1 Protein Fragment Generates Anticancer Vaccine Response via Macrophage Activation and Polarization Mechanism. Journal of Cancer, 6(6), 583–592. https://doi.org/10.7150/jca.11567.
54
Parry A.L., Spain S.G., Ellis J., Davis B.D., Cameron N.R. (2009). Glycopolymer-functionalized gold nanoparticles: A new strategy toward synthetic anticancer vaccines. Abstr. Pap. Am. Chem. Soc. 2009;238.
55
Brinas R.P., Sundgren A., Maetani M., Abbudayyeh O., Young H.A., Sanford M., Barchi J.J. Development of a novel cancer vaccine based on multivalent presentation of tumor-associated carbohydrate antigens on gold nanoparticle scaffolds. Abstr. Pap. Am. Chem. Soc. 2010;240.
56
Brinãs, R. P., Sundgren, A., Sahoo, P., Morey, S., Rittenhouse-Olson, K., Wilding, G. E., . . . Barchi, J. J. (2012). Design and synthesis of multifunctional gold nanoparticles bearing tumor-associated glycopeptide antigens as potential cancer vaccines. Bioconjugate Chemistry, 23(8), 1513–1523. https://doi.org/10.1021/bc200606s.
57
Lee, I.-H., Kwon, H.-K., An, S., Kim, D., Kim, S., Yu, M. K., . . . Jon, S. (2012). Imageable antigen-presenting gold nanoparticle vaccines for effective cancer immunotherapy in vivo. Angewandte Chemie (International Ed. in English), 51(35), 8800–8805. https://doi.org/10.1002/anie.201203193.
58
Almeida, J. P. M., Figueroa, E. R., & Drezek, R. A. (2014). Gold nanoparticle mediated cancer immunotherapy. Nanomedicine : Nanotechnology, Biology, and Medicine, 10(3), 503–514. https://doi.org/10.1016/j.nano.2013.09.011.
59
Ahn, S., Lee, I.-H., Kang, S., Kim, D., Choi, M., Saw, P. E., . . . Jon, S. (2014). Gold nanoparticles displaying tumor-associated self-antigens as a potential vaccine for cancer immunotherapy. Advanced Healthcare Materials, 3(8), 1194–1199. https://doi.org/10.1002/adhm.201300597.
60
Zhou, X., Liu, R., Qin, S., Yu, R., & Fu, Y. (2016). Current Status and Future Directions of Nanoparticulate Strategy for Cancer Immunotherapy. Current Drug Metabolism, 17(8), 755–762. PMID: 27411558.
61
Dykman, L., Staroverov, S., Bogatyrev, V., & Shchyogolev, S. (2011). Gold nanoparticles as an antigen carrier and as an adjuvant. Gold Nanoparticles: Properties, Characterization and Fabrication.
62
Liu, Y., & Chen, C. (2016). Role of nanotechnology in HIV/AIDS vaccine development. Advanced Drug Delivery Reviews, 103, 76–89. https://doi.org/10.1016/j.addr.2016.02.010.
63
Wang, Z., Qin, C., Hu, J., Guo, X., & Yin, J. (2016). Recent advances in synthetic carbohydrate-based human immunodeficiency virus vaccines. Virologica Sinica, 31(2), 110–117. https://doi.org/10.1007/s12250-015-3691-3.
64
Marradi, M., Di Gianvincenzo, P., Enríquez-Navas, P. M., Martínez-Ávila, O. M., Chiodo, F., Yuste, E., . . . Penadés, S. (2011). Gold nanoparticles coated with oligomannosides of HIV-1 glycoprotein gp120 mimic the carbohydrate epitope of antibody 2G12. Journal of Molecular Biology, 410(5), 798–810. https://doi.org/10.1016/j.jmb.2011.03.042.
65
Di Gianvincenzo, P., Chiodo, F., Marradi, M., & Penadés, S. (2012). Gold manno-glyconanoparticles for intervening in HIV gp120 carbohydrate-mediated processes. Methods in Enzymology, 509, 21–40. https://doi.org/10.1016/B978-0-12-391858-1.00002-2.
66
Glass, J. J., Kent, S. J., & Rose, R. de. (2016). Enhancing dendritic cell activation and HIV vaccine effectiveness through nanoparticle vaccination. Expert Review of Vaccines, 15(6), 719–729. https://doi.org/10.1586/14760584.2016.1141054.
67
Mörner, A., Jansson, M., Bunnik, E. M., Schøller, J., Vaughan, R., Wang, Y., . . . Lehner, T. (2011). Immunization with recombinant HLA classes I and II, HIV-1 gp140, and SIV p27 elicits protection against heterologous SHIV infection in rhesus macaques. Journal of Virology, 85(13), 6442–6452. https://doi.org/10.1128/JVI.00129-11:
68
Abia I., Peng T.Y., Mains S., Pohl N. Design and synthesis of thiol-terminated oligosaccharides for attachment on gold nanoparticles: Toward the development of an HIV vaccine. Abstr. Pap. Am. Chem. Soc. 2013;246:
69
Chiodo, F., Enríquez-Navas, P. M., Angulo, J., Marradi, M., & Penadés, S. (2015). Assembling different antennas of the gp120 high mannose-type glycans on gold nanoparticles provides superior binding to the anti-HIV antibody 2G12 than the individual antennas. Carbohydrate Research, 405, 102–109. https://doi.org/10.1016/j.carres.2014.07.012.
70
Di Gianvincenzo, P., Calvo, J., Perez, S., Álvarez, A., Bedoya, L. M., Alcamí, J., & Penadés, S. (2015). Negatively charged glyconanoparticles modulate and stabilize the secondary structures of a gp120 V3 loop peptide: Toward fully synthetic HIV vaccine candidates. Bioconjugate Chemistry, 26(4), 755–765. https://doi.org/10.1021/acs.bioconjchem.5b00077.
71
Xu, L., Liu, Y., Chen, Z., Li, W., Liu, Y., Wang, L., . . . Chen, C. (2012). Surface-engineered gold nanorods: Promising DNA vaccine adjuvant for HIV-1 treatment. Nano Letters, 12(4), 2003–2012. https://doi.org/10.1021/nl300027p.
72
(72) k konstruirovaniiu vaktsiny protiv kleshchevogo éntsefalita [Perfection of methodical approaches to designing vaccines against tick-borne encephalitis]. Voprosy Virusologii, 41(3), 107–110. PMID: 8928501.
73
Zhao, Z., Wakita, T., & Yasui, K. (2003). Inoculation of plasmids encoding Japanese encephalitis virus PrM-E proteins with colloidal gold elicits a protective immune response in BALB/c mice. Journal of Virology, 77(7), 4248–4260. PMID: 12634382.
74
Yuan, R., Zhang, L., Li, Q., Chai, Y., & Cao, S. (2005). A label-free amperometric immunosenor based on multi-layer assembly of polymerized o-phenylenediamine and gold nanoparticles for determination of Japanese B encephalitis vaccine. Analytica Chimica Acta, 531(1), 1–5. https://doi.org/10.1016/j.aca.2004.10.072.
75
Zhang, L., Yuan, R., Chai, Y., Chen, S., Wang, N., & Zhu, Q. (2006). Layer-by-layer self-assembly of films of nano-Au and Co(bpy)33+ for the determination of Japanese B encephalitis vaccine. Biochemical Engineering Journal, 28(3), 231–236. https://doi.org/10.1016/j.bej.2005.11.014.
76
Staroverov, S. A., Vidyasheva, I. V., Gabalov, K. P., Vasilenko, O. A., Laskavyi, V. N., & Dykman, L. A. (2011). Immunostimulatory effect of gold nanoparticles conjugated with transmissible gastroenteritis virus. Bulletin of Experimental Biology and Medicine, 151(4), 436–439. PMID: 22448360.
77
Ocampo, M., Rodríguez, D. C., Rodríguez, J., Bermúdez, M., Muñoz, C. M., Patarroyo, M. A., & Patarroyo, M. E. (2013). Rv1268c protein peptide inhibiting Mycobacterium tuberculosis H37Rv entry to target cells. Bioorganic & Medicinal Chemistry, 21(21), 6650–6656. https://doi.org/10.1016/j.bmc.2013.08.018.
78
Bhattacharyya, S., Kudgus, R. A., Bhattacharya, R., & Mukherjee, P. (2011). Inorganic Nanoparticles in Cancer Therapy. Pharmaceutical Research, 28(2), 237–259. https://doi.org/10.1007/s11095-010-0318-0.
79
E. ABRAHAM PETER B. HIMMEL, G. U.Y. (2009). Management of Rheumatoid Arthritis: Rationale for the Use of Colloidal Metallic Gold. Journal of Nutritional & Environmental Medicine, 7(4), 295–305. https://doi.org/10.1080/13590849762411.
80
Tsai, C.-Y., Shiau, A.-L., Chen, S.-Y., Chen, Y.-H., Cheng, P.-C., Chang, M.-Y., . . . Wu, C.-L. (2007). Amelioration of collagen-induced arthritis in rats by nanogold. Arthritis and Rheumatism, 56(2), 544–554. https://doi.org/10.1002/art.22401.
81
Brown, C. L., Bushell, G., Whitehouse, M. W., Agrawal, D. S., Tupe, S. G., Paknikar, K. M., & Tiekink, E. R. T. (2007). Nanogoldpharmaceutics. Gold Bulletin, 40(3), 245–250. https://doi.org/10.1007/BF03215588.
82
Brown, C. L., Whitehouse, M. W., Tiekink, E. R. T., & Bushell, G. R. (2008). Colloidal metallic gold is not bio-inert. Inflammopharmacology, 16(3), 133–137. https://doi.org/10.1007/s10787-007-0017-6.
83
Paciotti, G. F., Myer, L., Weinreich, D., Goia, D., Pavel, N., McLaughlin, R. E., & Tamarkin, L. (2004). Colloidal gold: A novel nanoparticle vector for tumor directed drug delivery. Drug Delivery, 11(3), 169–183. https://doi.org/10.1080/10717540490433895.
84
Paciotti, G. F., Kingston, D. G.I., & Tamarkin, L. (2006). Colloidal gold nanoparticles: A novel nanoparticle platform for developing multifunctional tumor-targeted drug delivery vectors. Drug Development Research, 67(1), 47–54. https://doi.org/10.1002/ddr.20066.
85
Farma, J. M., Puhlmann, M., Soriano, P. A., Cox, D., Paciotti, G. F., Tamarkin, L., & Alexander, H. R. (2007). Direct evidence for rapid and selective induction of tumor neovascular permeability by tumor necrosis factor and a novel derivative, colloidal gold bound tumor necrosis factor. International Journal of Cancer, 120(11), 2474–2480. https://doi.org/10.1002/ijc.22270.
86
Stern, S. T., Hall, J. B., Yu, L. L., Wood, L. J., Paciotti, G. F., Tamarkin, L., . . . McNeil, S. E. (2010). Translational considerations for cancer nanomedicine. Journal of Controlled Release : Official Journal of the Controlled Release Society, 146(2), 164–174. https://doi.org/10.1016/j.jconrel.2010.04.008.
87
Gu, H., Ho, P. L., Tong, E., Wang, L., & Xu, B. (2003). Presenting Vancomycin on Nanoparticles to Enhance Antimicrobial Activities. Nano Letters, 3(9), 1261–1263. https://doi.org/10.1021/nl034396z.
88
Selvaraj, V., & Alagar, M. (2007). Analytical detection and biological assay of antileukemic drug 5-fluorouracil using gold nanoparticles as probe. International Journal of Pharmaceutics, 337(1-2), 275–281. https://doi.org/10.1016/j.ijpharm.2006.12.027.
89
Saha, B., Bhattacharya, J., Mukherjee, A., Ghosh, A. K., Santra, C. R., Dasgupta, A. K., & Karmakar, P. (2007). In Vitro Structural and Functional Evaluation of Gold Nanoparticles Conjugated Antibiotics. Nanoscale Research Letters, 2(12), 614–622. https://doi.org/10.1007/s11671-007-9104-2.
90
Nirmala Grace, A., & Pandian, K. (2007). Antibacterial efficacy of aminoglycosidic antibiotics protected gold nanoparticles—A brief study. Colloids and Surfaces a: Physicochemical and Engineering Aspects, 297(1-3), 63–70. https://doi.org/10.1016/j.colsurfa.2006.10.024.
91
Grace, A. N., & Pandian, K. (2007). Quinolone Antibiotic-Capped Gold Nanoparticles and Their Antibacterial Efficacy Against Gram Positive and Gram Negative Organisms. Journal of Bionanoscience, 1(2), 96–105. https://doi.org/10.1166/jbns.2007.018.
92
Nie, Z., Liu, K. J., Zhong, C.-J., Wang, L.-F., Yang, Y., Tian, Q., & Liu, Y. (2007). Enhanced radical scavenging activity by antioxidant-functionalized gold nanoparticles: A novel inspiration for development of new artificial antioxidants. Free Radical Biology & Medicine, 43(9), 1243–1254. https://doi.org/10.1016/j.freeradbiomed.2007.06.011.
93
Joshi, H. M., Bhumkar, D. R., Joshi, K., Pokharkar, V., & Sastry, M. (2006). Gold nanoparticles as carriers for efficient transmucosal insulin delivery. Langmuir, 22(1), 300–305. https://doi.org/10.1021/la051982u.
94
Ahmed, S. V., & Sajjan, R. (2009). Chrysiasis: A gold „curse“! BMJ Case Reports, 2009. https://doi.org/10.1136/bcr.07.2008.0417.